GRAHAM'S LAW PRACTICE (#1)

<u>Rate A</u> = Rate B	$= \sqrt{\frac{\text{molar mass B}}{\sqrt{\text{molar mass A}}}}$
at constant temperature	

Directions:

Show all work. Remember that the first gas mentioned in the problem is A, and the second is B. Assume constant temperature for the problems below.

- Calculate the difference in effusion rates of hydrogen gas and oxygen gas. Does hydrogen gas effuse slower or faster than oxygen gas?
- 2) What is the difference in diffusion rates of nitrogen dioxide and neon? Does nitrogen dioxide gas effuse slower or faster than neon gas?
- Compare the diffusion rates of propane (C₃H₈) and methane (CH₄) gases. Explain your answer.
- Calculate the difference in effusion rates for carbon dioxide and radon gases. Explain your answer.
- 5) What is the difference in effusion rates of ozone (O₃) and carbon monoxide gases? Does ozone effuse slower or faster than carbon monoxide?
- Compare the diffusion rates of helium and propane (C₃H₈) gases. Explain your answer.
- CHALLENGE: A gaseous compound containing C, H, and Cl effuses 0.411 times as fast as neon. Choose the correct molecular formula of the compound from this list: CH₃Cl, CH₂Cl₂, CHCl₃, C₂H₃Cl₃
- 8) CHALLENGE: Bauckium gas diffuses 0.25 times as fast as He. What is the molar mass of Bauckium?